PHYSICAL REVIEW E

VOLUME 50, NUMBER 1

JULY 1994

Solution of the effective wave equation by perturbation theory
in a dense hydrogen plasma

R. Fehr and W.-D. Kraeft
Department of Physics, University of Greifswald, 17487 Greifswald, Germany
(Received 15 December 1993)

The density dependence of two-particle states is an essential feature of nonideal plasmas and
has to be taken into account for the investigation of the ionization equilibrium and the ionization
and recombination processes in such plasmas. In this paper, we provide a rather simple method to
calculate two-particle bound states in a dense hydrogen plasma and show that this problem can be

dealt with in first order perturbation theory.

PACS number(s): 52.20.—j, 52.25.Jm, 05.30.—d

I. INTRODUCTION AND THEORETICAL
BACKGROUND

Strongly coupled plasmas are interesting many particle
systems both from the theoretical and from the experi-
mental points of view. Certain astrophysical objects such
as the giant planets and the sun are dense strongly cou-
pled plasmas. In laboratories, dense plasmas are investi-
gated in heavy ion experiments in connection with iner-
tially confined fusion. For references see, e.g., [1-6] and
papers quoted therein.

Dense nonideal plasmas show a number of features
which are essentially connected with the coupling of the
particles. Here we mention the dynamical screening, the
dynamical self energy, and the formation of bound states.
The last is of special importance for the understanding of
partially ionized plasmas. As we will show in detail, the
energy levels of two-particle bound states and the con-
tinuum edge become density dependent, so that there is
a crossover and thus a vanishing of localized states which
is referred to as the Mott effect. Moreover, the effect of
the surroundings leads to a damping and thus to a finite
lifetime of bound states.

In this way, the optical, thermodynamic, and transport
properties of partially ionized plasmas are changed dras-
tically as compared with those of fully ionized plasmas
on one hand and those of neutral gases on the other and
may show, e.g., new types of phase transitions [7,8].

In the past, much work has been done in order to stu-
dy the problem of two-particle states in different approx-
imations, especially to deal with the numerical difficul-
ties of a fully dynamical description. In 1970, Rogers et
al. [9] published a solution of the Schrédinger equation,
including many particle effects via the Debye potential.
A Bethe-Salpeter equation with a dynamically screened
Coulomb potential as an effective potential was given in
1977 using a Green’s function technique [10] [see Eq. (1.4)
below]. For the solution a pole approximation for the
screening function was used in [10]. For electron-hole
plasmas a consequent inclusion of many particle effects
was done in [11-13], and the derivation of optical proper-
ties is described in [14,15]. In [16], a coupled nonlinear
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system of equations for Green’s functions was solved nu-
merically in order to determine two-particle properties.
Recently, in [17] calculations were carried out with the
full RPA (random phase approximation) dielectric func-
tion. It has been shown that the screening has to be taken
into account dynamically and that the static description
is valid only in the low density limit. Because of the com-
plexity of such calculations, we investigate the question
whether the procedure may be adequately replaced by a
more simple (perturbative) one.

The appropriate starting point is the quantum statisti-
cal Green’s function technique [18]. In this framework,
one describes the properties of bound particles by the
two-particle Green’s function G,;. We write the so called
Bethe-Salpeter equation in the particle-particle channel
(18,19]

Gap(121'2') = GY,(121'2") + ik | d3d4d3d4 G, (13)

xGp(24)Kab(3439)Gop(341'2") ,  (1.1)
where K, is the effective two-particle potential, which
still contains all interactions of two particles. Here, e.g.,
3 = (r4t;), etc. In the screened potential approximation,
K, is taken to be the screened two-particle potential

ihK,5(343 4) =~ 1AV, (34)5(33)5(44). (1.2)
This approximation means the restriction to dynamically
screened two-particle interactions only. For the single-
particle Green’s function, we use a Dyson equation with
self energy in the Montroll-Ward approximation [18]

G.(11)=G%(11") + | d1d2G?(11) %, (12)G.(21'),

T.(12) = =HF (12) + =MW (12). (1.3)
If we consider the relative motion with respect to the cen-
ter of mass, the latter being at rest, and restrict ourselves
to the region of nondegeneracy and therefore to the first
order in density concerning the distribution functions, we
get the following effective wave equation in momentum
Matsubara representation [18]:
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L, o4 (hw L
AV:f(q,p, z) = Vab(q)/ %Ime 1(q,u.J—Me)

x{ np(fw) + 1
bz —hw— Eq(p) — Eo(—P—q)
np(fw) + 1 }
fiz hw—E,(p+q)— Ep(—P)

(1.5)

The one-particle Green’s functions are taken with dyna-
mical self energies. Here we have included in the first
line of the right-hand side of Eq. (1.4) the phase space
occupation effect (Pauli blocking) (i), in the second the
exchange self energy (ii), and in the third line the dy-
namically screened effective potential correction (iii) and
the dynamical self energy correction (iv). One can see
that a compensation occurs between (i) and (ii) on one
hand and (iii) and (iv) on the other in the limit ¢ — 0.
But this compensation acts only for bound states, where
the wave function is sharply localized in coordinate space
and not for scattering states, and so a Mott transition can
take place. This results in a lowering of the effective ion-
ization energy and thus influences such properties like the
ionization cross section and recombination rates. For the
continuum one has to take into account the self energies
only:

]

=2
(2;@ )¢ﬁ(ﬁ,2)+/(2:;)3 2 QYR (F+d,2)

dq

o ﬁ)s[Va’Z(q) Vab ()12 (F+4, 2)

dq

(4,8, 2) [Yab(F+7, 2) —Vas (P, 2)]

Econt = EEF(P‘—‘O) + ZEF (P= 0) + EMW (P= 0, Econt)
(1.6)

with

di
EMw(pzoa Econt) =/( £l

W AV:E(‘ZP: o, Econt)~

(1.7)

II. NUMERICAL SOLUTION

We assume that the solution of Eq. (1.4) is close to
that of the Debye problem and that the perturbation is
relatively small. This perturbation becomes larger in the
region of the Mott transition, as one can see also from

the results. We carry out first order perturbation theory
Hap = HO 4 P, (2.1a)
B DO@HG D)% (5)° (2.1b)
D (@)v()°
E = EP™e 4, E'. (2.1¢)

In order to have the unperturbed problem on the left-
hand side of the following equation (2.2) we add the De-
bye potential VP on both sides, so that the perturbative
plasma operator HP,**™ is represented by the right-hand
side

/ oy Vao(@) {[~ folD) = Fo(~PWREF+3,2) — [falF+D) + So(F-DWE(F,2)}

+ (21rﬁ,)3 A

The Debye wave functions are determined by a sim-
ple Numerov algorithm and transformed into momentum
space. In Fig. 1 one can see a delocalization tendency of
the wave functions in position space, which means that
bound states and scattering states become more similiar
with increasing density. Using Legendre polynomials and
orthogonality relations we can manage the angle depen-
dence.

V(G P, 2) (5 (F+d 2) —vap (B, 2)] -

(2.2)

A. Static case

In the static case we replace the effective potential
by the Debye potential, and for the self energy we sim-
ply take the Debye shift (this scheme corresponds to the
Ecker-Weizel potential)

AV = Vag — Vab,

AT = _ge?. (2.3)
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FIG. 1. Debye wave functions in position space. ao is the
1/2
Bohr radius and & = (za ﬁg%’f) ; one can see the delo-

calization with increasing density.

So we have

=2
( P —ne2+zz“‘+z:m) 2. (7)
2mab

H1 = falf) = 1] [ ags Voo @ Eim P+
(m 3[ V2 (D)~ Vab(D17im (F+) = B m (P).
(2.4)

There are no numerical problems, and the results are the
same as in [17,20].

B. Dynamical case

In order to find a better description of the screening we
use the dynamical one. The behavior of the (dynamical)
dielectric function, which we take in RPA, follows from

e PA (G w + ie)

fa(E)—fa(qd'*'E) .
Ea(ic')—Ea(d‘+ic')+ﬁ(w+ie)

= 1+Z/ 2ﬂﬁ)3 /aa(

(2.5)
Using Heaviside units
e2
5 = 2m. = h = 4me, = 1, (2.6)
and the parameters and dimensionless quantities
_ ol Mg ol 47n.e?
- kBT ’ a — me’ e me )
2,2 1
2 Mo 1 oy My R —, (2.7)
2me ﬁwp, ﬁup, ol

we find in the nondegenerate case [18]

FIG. 2. Ime~1"RPA The peaks due to the electrons (e) are
more pronounced than those due to the ions (p).

eRPA(X,Y) = 1+;1%Z 21 (5.,%+(—1)’>

a j=0
3 1 Y .
X1F1 [1, 5;—E (6a}~z+(—1)1>
xK"'Xz],
1
RPA \/_ K 1/2(_1\i— - A’K3x?
me"PA(X,Y) = V-5 ] ;oaa 1)ie ,
A=AX,Y)=ba=— +( 1)7. (2.8)

In Fig. 2 one can see that Ime L'RPA becomes very
sharply peaked for small momenta as a function of the
frequency Y. This is the plasmon peak. The other sin-
gularity near the kinetic energies in the denominator of
Eq. (1.5) has to be dealt with in the sense of the principal
value.
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FIG. 3. Dispersion relation Ree®"(X,Y’) = 0 for different
densities. x as in Fig. 1.
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TABLE 1. 1s two-particle bound state energies. Comparison of the results from [17] and this
paper in different approximations. In the perturbative plasma operator H. 5,',““‘“ (dynamical calcula-
tion). In the energy denominators of Eq. (1.5) Az is taken to be (1) EC°%°™P and (2) EPebYe _ ke
The continuum is taken from [17], kgT = 1 Ry = 13.6 eV, mep =0.9995m..

KD Debye ne (cm™3) (1) (2) Econt
1x107° -0.9995 1.343 x 10! -0.9995 -0.9995 -0.9995 -2%x107°
0.001 -0.9995 1.343 x 107 -0.9995 -0.9995 -0.9995 -0.0632
0.010 -0.9996 1.343 x 10'° -0.9996 -0.9995 -0.9995 -0.1994
0.200 -1.0001 5.370 x 10*° -0.9997 -0.9999 -0.9999 -0.2814
0.025 -1.0004 8.391 x 10*? -0.9998 -1.0001 -1.0001 -0.3166
0.050 -1.0031 3.356 x 10%° -1.0021 -1.0017 -1.0016 -0.4424
0.100 -1.0137 1.343 x 10%! -1.0095 -1.0088 -1.0086 -0.6208
0.200 -1.0532 5.370 x 10%* -1.0376 -1.0345 -1.0334 -0.8685
0.250 -1.0815 8.391 x 10%! -1.0582 -1.0535 -1.0506 -0.9711
0.300 -1.1129 1.208 x 1022 -1.0841 -1.0804 -1.0778 -1.0571
1,RPA

To manage the peaks in Ime™ near the plasmon

frequency, we use a sum rule

‘/+de)4Ef£&32-——r. (2.9)

oo le(X, V)

The plasmon peaks are determined approximately by
ReeRPA(X,Y) = 0 (see Fig. 3).

As in [21,22] we rearrange the integrand in such a way
that there is a zero contribution at the peak position.
This is indicated for the electrons in Ime~!(X,Y) and
one energy denominator in Eq. (1.5) only, namely,

Y np (Ypl)

+oo 1 +oo
— __B(X,Y)dY = - X ™) \pxv)dy
/w y —yp oY) / {Y—YP prnB(Y)(Ypl—Y1°)} (%)

2

with B(X,Y) = IL?‘%%‘,’F@). Here 1Y}, are the ex-

trema of Ime~1"RPA Jocated near the solution of the dis-
persion relation Ree(X,+Y,) = 0, and Y_ stands for
E,(X, Xo) + Ep(X, Xo) — :—:l Using this scheme one
has to be aware of another singularity that occurs in the
case Y, — Y in the subsequent angle or momentum
integration, respectively. We used a principal value like
integration method and got satisfying results.
Regarding Fig. 2 one may wonder why we take the
ions in the dielectric function into the same account as
the electrons although the peaks in Ime~1RPA due to the
ions are very small and could be neglected as compared
to the electrons. But the ions change the behavior of
such quantities like the self energy in a drastic way (see,

0
Y np(—Yp) }
+ T B(X,Y)dY
/_oo {Y -Y? Yang(Y)(Ym +Y?P) (X.Y)
{ et ) oo
You(Yo—Y?)  Ya(Yu+Y?) '

7 — , e S -

B ‘L_ T i

I R

< 5F | ‘ P P

e 1 | f ]

= X=0.2 ; 1\ | Il

T osp K=t | P 3 >

!r \ SN ! S
2+ ’( \ !
T / \M /\ e _
/ \
ob— : ]
Y

! 3 -2 -1 o] 1 2 3

e.g., [22]). To understand this one has to look at the
combination of Ime~! with the other terms like the Bose
function. One can see that for Y — 0 (w — 0) (see also
Fig. 4)

FIG. 4. Ime VR’PAnp(w). Now the peaks due to the ions
(p) are not negligible.



o\ /2
}l,iﬂlolme(X, Y)ng(Y) ~ (i) . (2.11)
And so in a hydrogenlike plasma with its big mass dif-
ference, we perhaps overestimate the contribution of the
ions in the RPA and have to look for better approxima-
tions, while for electron-hole plasmas with equal masses
of the components, the RPA works rather well [11,12].

III. RESULTS

We did our calculations for the real part of the two-
particle state energies in the temperature range from 0.85
to 13.6 eV, which means for temperatures from 9.86 x
103 to 1.575 x 10° K and for densities up to the Mott
transition depending on temperature. For temperatures
< 1.97 x 10 K and high densities one reaches the region

of degeneracy where our approximations are no longer
valid.
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The numerical results show especially the compensa-
tion effect as stated in Sec. I. So the bound state levels
are only weakly density dependent. This is not the case
for plasmas with multiply charged ions, where there is a
level shift proportional to n'/2 [23].

Despite the fact that the plasma Hamiltonian H:;“m
is not small near the Mott transition and the basic as-
sumption for perturbation theory becomes questionable,
the general agreement with exact solutions of Eq. (1.4)
in [17] is rather good.

The aim of this paper was to show that, in the temper-
ature and density region of interest, perturbation theory
gives reasonably good results. This may be concluded
from the comparision with exact numerical solutions,
which are much more time consuming. Moreover, one
can see from Table I that the simple Ecker-Weizel level
(Debye Hamiltonian) is sufficient to a good approxima-
tion. The latter case can be dealt with numerically even
more simply than the perturbative scheme on a dynami-
cal level.
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